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ABSTRACT:  

The paper deals with the numerical solution of IVP’s for systems of stiff ODE’s with particular 

emphasis on implicit linear multistep methods (LMM), particularly the backward differentiation 

formulae (BDF). In thispaper we intend to find the value of the optimal convergence rate factor 

that will minimize the computational costs in the context of terminating simplified Newton 

iterations for non-stiff problems. We refer to this convergence rate factor,  as the optimal 

convergence rate. We conclude that for non-stiff problems the optimal convergence rate is such 

that . This compares favourably with the optimal convergence rate for non-stiff 

problems using small stepsizes as obtained in Gustaffsson and Soderlind [1, Fig2, p27]. We 

further conduct experiments using several values of  in solving the van de Pol problem which 

uses small stepsizes when solved using ode15s with ,  for  We monitor the 

number of function calls for various convergence rate. The results obtained confirm our lower 

bound on . 
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1 Introduction 

The paper is concerned with the numerical integration of  

 

 

In the literature some initial value problems (1) are referred to as stiff. A prominent feature for 

these problems is that they are extremely difficult tosolve by standard explicit methods. The time 

integration of stiff systems isusually achieved using implicit methods, and for many codes by 

linear multistepmethods. A linear multistep method also called linear k-step methods [2], [3], [4], 

[5], [6] instandard constant stepsize form a linear multistep or k-step method is defined thus: 

 

 

where and  are constants and  = 1. denotes 

and is the stepsize. The condition that  = 1removes the arbitrariness that arises 

from the fact that both sides of the IVPcould be multiplied by the same constant without altering 

the method. Thelinear multistep method (2) is said to be explicit if and implicit if . 

This leads to  

 

where is a known value. [7], [8], [9], [10], [11],[12]. At each integration step 

we must solve the nonlinear equation (4). To solve for most codes use the Newton iterative 

method and its variantsin the following form 

 

with the starting value known and “fairly” accurate. For the full Newtonmethod 

 

 

 

The use of the Newton method is due to the stiffness phenomenon. For largeproblems evaluating 

the Jacobian,  (and hence the Newton iteration matrix ) and solving the linear 

algebraic system are by far the most computationally expensive operations in the integration. 
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There are various strategiesused in practice to try and minimise the cost of computing the 

Jacobian and theNewton matrix. These measures are mainly centredonadministering the iteration 

matrix in (6) leading to simplified Newton methods amongst others [13], [14], [15]. In this paper 

we focus on optimally terminating the simplified Newton iterations. 

 

2Theory 

We intend to find the value of η (set to 0.9 in ode15s) that will minimize the computational costs 

in the context ofsimplified Newton. We refer to this convergence rate factor,  as the 

optimalconvergence rate. For functional iteration this task is considered in Gustafsson and 

Soderlind [1], ideal for nonstiff problems, where . To simulatethe nonstiff 

implementation in the context of simplified Newton we consider thecase when the stepsize  is 

small. We emphasise here that the convergencerate of an iterative solver usuallydepends on the 

stepsize. Thus the step sizeselection strategy is important. 

 

It can be shown that with , 

 

 

 

where  and  is the mean value Jacobian at such that  

 

If the iteration is convergent, there follows  

 

where  Now since we assume that  

 

 

 

yielding in (9) 
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In practice η is replaced with the estimate of the convergence rate factor to getthe practical 

convergence test of the form 

 

 

 

for some appropriate τ . We now follow Gustafsson and Soderlind [1]. Let  bethe number of 

iterations needed to satisfy (12). Then 

 

 

where   is the error in the initial . Thus 

 

 

implying that, the number of function evaluations per unit step (i.e. per unittime of integration) is 

proportional to , where approximately 

 

 

 

 

For modelling the relationship between  and  we have from (9) the approximation  

 

 

 

 

Hence if  

 

 

 

For small  
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We may therefore use the model  

 

 

 

for some constant  In ode15s the iteration matrix is updated and refactored every time the step 

size,  is changed, see Shampine and Reichelt [16], so that for every successful time step the 

condition  holds.  

 

This model is also used by Gustafsson and Soderlind [1] who analyse thecase for functional 

iteration, namely, . Therefore 

 

 

 

The starting value  is usually constructed using an interpolation formula,which makes the 

initial error  depend on (and hence ). Assuming thatthe dependence is usually notstrong, 

is assumed to be aconstant, so that we have the proportionality relationship 

 

 

where the minus sign is a result of assuming . The expression (21) hasa minimum 

at  which indicates the appropriate selection of the convergence rate as, say 

 The function (21) is fairly flat around the minimum, any value  

would probably be acceptable. See Figure 1 below. 

 

It should be noted that this model, for both the functional iteration [1] and our analysis for small 

, relies on the assumption that the number of iterations , is not limited and is significantly 

large. From [1, Fig2, p.27] for functional iteration for a non stiff problem van de Pol problem 
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with , if the maximum allowed iterations is 10 then any value  is 

acceptable. Their theoretical expectations are approximately met when We conduct 

experiments to investigate the range of our in solving the same problem. 

 

3Numerical Experiments 

In this experiment we aim to obtain a plot similar to the plots obtained byGustafsson and 

Soderlind [1, Fig.2,p.27] for the simplified Newton iteration for small . That is, we intend to 

obtain a plot of the total work (numberof function calls) as a function of the convergence rate 

when integrating thenonstiff van de Pol problem with ,for ∈ [0, 30] withode15s. The 

code ode15s uses small stepsizes(maximum stepsize is about 0.9) throughout the integration 

when solving this problem. This will thensimulate the above small  theory for the simplified 

Newton method. We havea nonstiff problem solved by the stiff methods of ode15s verifying that 

the theory forsmall, corresponds to using functional iteration in the case of Gustafssonand 

Soderlind [1]. 

 

    In ode15s the acceptable convergence rate is  and the maximumallowed number of 

iterations is 4. We use the weighted infinity norm and experiment with various convergence rates 

in the range[0.01, 0.97]. For the default ode15s settings discussed above the plot of 

functioncalls against convergence rate is plotted as rings (o) in Figure 1. We furtherincrease the 

maximum number of allowed iterations in ode15s to 100 and investigate the behaviour of 

function evaluations versus convergence rate. Thebehaviour is plotted as crosses (+) in Figure 1. 

To determine whether ode15sconforms to the theory we also include the plot of the function (21) 

for theoptimal convergence rate as a continuous line in Figure 1. For the plots to fiton the same 

scale the expression (11) was normalised with a constant thatmakes its minimum equal to the 

minimum number of function callsexperienced in practice, that is, 

 

 

 

We obtain Figure 1. 
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4Results and Conclusions 

 

 

Figure1: Total work (number of function calls) as a function of the convergence rate set-point when integrating the 

van de Pol problem with The equation solver includes a limit on the number of allowed iterations. The 

crosses and the rings correspond to setting this limit as 100 and 4 respectively. The solid line is the graph of the 

function (21). We use default tolerances. 

 

The expression (21) hasa minimum at  which indicates the appropriate 

selection of the convergence rate as, say  The function (21) is fairly flat around the 

minimum, any value would probably be acceptable. See Figure 1 below.This is 

in agreement with  as obtained by Gustafssonand Soderlind [1]. 

 

Regarding our experiments, From Figure 1, for the simplified Newton iteration with small it is 

clear thatfor the nonstiff problem, van de Pol problem if the maximumnumber of allowed 

iterations is 4 or 100 then any value  is acceptable. The largest observed 
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number of iterations performed throughout the entire integration was 3. As seen in (13), the key 

requirement is that , which is more meaningful if  is large. Moreover the result 

(21) is only valid when the dependence of the initial error  on the step size is not strong. We 

note that in ode15s,  is constructed using an interpolation polynomial, so that the initial error 

depends on . This in part explains the difference between our plots and the plots in 

Gustafssonand Soderlind [1] for the van de Pol problem using a functional iteration based 

code.The convergence rate  will (for the non-stiff van de Pol problem) yield the 

minimum number of function evaluations. The same conclusions can be drawn even when the 

maximum number of allowed iterations is increased to 100, see Figure 1. 

 

Meanwhile, we conclude that the optimal convergence rate for non-stiff problems in the solution 

of odes using BDFs in the simplified Newton context is such that: 

 

To be specific . 
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